
November 2001 www.stsc.hill.af.mil 27

In the quest for better, faster, and cheaper,
many companies are wrestling with a

methodology problem convinced that
their choice is between agile development
vs. stable processes. People on both sides
of the mat are sure that the two are per-
petual adversaries. This article puts an
example from each side in the match:
Representing agile development will be
Extreme Programming (XP); and repre-
senting stable processes will be the
Capability Maturity Model® (CMM®). It
follows a train of thought that seeks to dis-
pel the adversarial myth by looking at its
possible origins then building a bridge
into reality.

The Myth
The misconception among many com-
mercial software developers is that process
discipline in software development (such
as the CMM) is incompatible with fast-
moving development processes such as XP.
A similar misconception among many
process-oriented people – CMM or other-
wise – is that developing software quickly
is tantamount to chaos. If these two views
persist, they will keep excellent develop-
ment teams from realizing the benefits of
structured process improvement, and like-
wise keep larger organizations from look-
ing at alternative development methods.
They will be forever locked in a perpetual
wrestling match.

Let’s face it, whenever someone says
CMM, most people think of big, lumber-
ing, cumbersome, bureaucratic paperwork
and with good reason. When people think
of the places that have typically applied
CMM to their organization, or when they
look at the place that developed the guide

– the Department of Defense (DoD) and
their contractors – this could be an apt
description, often followed by a sense of
dread and loathing.

A quick look at XP may help frame
the discussion. From Don Wells’ [1] com-
prehensive Web site on the subject, we can
learn that XP has well-defined rules and
practices that can be summarized into four
main areas: planning, designing, coding,
and testing. In the June 2001 issue of
CrossTalk, Leishman [2] discussed
the differences between the traditional and
the XP development life cycles, while
Duncan [3] did an excellent job of
expanding on the requirements aspect of
software planning. Figure 1, courtesy of
Wells, depicts a typical XP project. In
Figure 1, readers seeing unfamiliar terms
such as spike and system metaphor, or the
unorthodox placement of acceptance test or
test scenarios are encouraged to investigate
the referenced materials for more informa-
tion.

XP is an exercise in iteration. The four
XP rules areas are not a sequence for the
entire project in one shot through. They
contain activities that occur with each iter-
ation. Code is developed by pairs of pro-
grammers, tested, and integrated in very
small increments. Not only are the
requirements gleaned from the user stories
(much like use cases), but the customer is

intimately involved with what and when
code is implemented based on the progress
of the development and the planning
results. Furthermore, XP has rules that
govern what small increment really means.
Planning also includes what many would
call project estimating, tracking, and con-
trols, as well as changes to how future XP
cycles will apply the experience gained
from the previous iterations.

Designing and coding are distinct
activities in XP. However, they occur along
with testing in very tight yet simple for-
mation. XP does not have a coding stan-
dard, except to specify that there must be
one. There are several other philosophical
and practical aspects to XP based on the
XP creator’s experience such as when code
is to be reused, the details of designs, the
timing of functionality, the characteristics
of the development team, and how to
ensure a closed-loop traceability between
testing and design.

To be sure, given the compact time
frames and immediacy of customer access,
one can guess that XP is not intended for
large and/or extremely complex projects
spread across several locations with no sin-
gle customer voice. Some say 20 develop-
ers would be a big team.

The Reality
The truth is that the CMM – and process

Dispelling the Process Myth: Having a Process
Does Not Mean Sacrificing Agility or Creativity

Hillel Glazer
Entinex, Inc.©

Many process-oriented software developers (some of whom use the CMM) think of Extreme Programming (XP) as
a “seat-of-the-pants” development method. Many high-speed cutting-edge developers (whether they use XP methods
or not) see CMM as a cumbersome unnecessary impediment to developing software quickly. This is the result of a
myth: Software development speed must be sacrificed when following a process-disciplined approach (such as
CMM). This myth is defeated when we look at two realities: The CMM is tailorable, and XP is disciplined. An
alternate look at the realities helps open up a new possible approach so that these methods can work together. This
article puts forth ideas to bridge the gap between the two sides using the suggested approach, and concludes that
process discipline can be achieved without sacrifice to the speed of development.

Open Forum

Figure 1: Extreme Programming Project

© All Contents Copyright 2001 Entinex, Inc.
All rights reserved.

®Capability Maturity Model and CMM is reg-
istered in the U.S. Patent and Trademark Office.

discipline in general – do not have to send
a chill down the developer’s spine. One of
the most overlooked aspects built right
into the CMM is the fact that it is meant
to be tailored to the organization. Another
significant but often-overlooked facet is
the definition of maturity as it applies to
software development. The definitive text
on the CMM, Paulk, et al [4], refers to
immature organizations as those whose
“processes are generally improvised.” And
that among immature organizations “even
if a software process has been specified, it
is not rigorously followed or enforced.”

One thing we can see about XP, even
from this brief explanation, is that it is not
improvised. As any XP developer will tell
you, it will not work unless the XP
methodology is followed. In fact, looking
at what makes a process mature is simply
that it is (again, thanks to Paulk) “explicit-
ly defined, managed, measured, con-
trolled, and effective.”

Why then is there such an impasse
between the goals of agile, creative, and
nimble development and the goals of
process improvement? Could it all be
related back to the same basic sticking
points found in most situations? Could it
be a simple matter of defining terms and
expectations? What if the problem were as
simple as that of confusing the how of
development with the what of develop-
ment? The prescriptive vs. the descriptive.

The Recipe vs. the Menu
A few words may be appropriate here to
further explain the previous paragraph.
Many standards, frameworks, and
methodologies developed by government
and industry are very rigorously defined.
Like a recipe, they prescribe what to do
and how to do it: measure three cups flour,
beat in two eggs, grease a 9-inch x 11-inch
x 1.5-inch pan, etc. They are full of verbs
and adverbs.

On the other hand, a menu describes
items that are listed: appetizer: salad or
paté … ; soup: cream of mushroom or
tomato … ; entrée: baked salmon or roast-
ed chicken … ; dessert: chocolate brown-
ies or vanilla ice cream … Menus are
mostly nouns and adjectives.

From a menu you can tell a lot about
an establishment. You can tell what their
strengths are; you can tell what ingredients
they like to use; in most cases you can tell
whether you might find something to fit
your appetite. Among better establish-
ments, you are likely to find similar char-
acteristics from menu to menu.

The CMM is more like a menu. It
does not tell you how to develop software,

or how to manage your software develop-
ment. It simply lists those items found on
the menu where good software products
are served.

Given the history of most standards,
in an industry with more than enough
recipes, a menu is a challenging mental
switch for some people to make. As a
result, many think they are being told to
cook, when all they are being told is to
dine.

The Suggestion
How does this apply to XP vs. CMM? Let
us say that the friction shows up due to a
misinterpretation of terms. For example

CMM’ers looking at XP see an undisci-
plined software management and
improvement methodology, and XP devel-
opers see CMM as a too rigid develop-
ment methodology. Well, there is the pos-
sible source of the answer!

What if we chose to distinguish XP as
a software development methodology and
CMM as a software management method-
ology? What if XP and CMM were not in
any way working at cross purposes. What
would we find if we looked closely at the
difference between development and man-
agement? Could the two be viewed as
complementary – even mutually support-
ive of one another? Would that get us
closer to solving the problem? I think so.

To help understand the difference
between development and management
methodologies, we will look to the hard-
ware world for an example. Hardware can
be designed and manufactured in any one
of several ways. We will call these the
development methodologies. The design
can be made on paper or by using com-
puter-aided design (CAD) systems. The
manufacturing can also be by hand or can
employ any number of automation sys-
tems at various steps in the production
process. Other aspects of hardware pro-
duction are the tools and tool control,

inspection, inventory control, materials
ordering, environmental controls, organi-
zational needs, and so on. These latter
aspects can be called management
methodologies.

The development and management
methodologies, therefore, are distinct dis-
ciplines. While the two are not completely
decoupled, one does not dictate the other.
Obviously the management methodolo-
gies must complement and support the
development methodologies. They must
work together to achieve business goals. A
desired state is that they are each opti-
mized to work in the same business and
operations strategy models. However, fun-
damentally, whether you draw design
blueprints by hand or by CAD is not dic-
tated by how you control the flow of mate-
rial through the plant.

The Bridge
In the software world, the CMM does not
care what development methodology you
use. It does not say that the Waterfall [5]
model is better than the Spiral [6] model.
Beyond that, it does not even say which
life cycle or development models to
choose. If XP is viewed as a development
methodology, what is to keep a software
management methodology such as the
CMM from being there at the same time?
Taken a step further, if the CMM is
viewed as a management methodology for
software process improvement, we can
completely erase any forced divorce
between CMM and XP.

In fact, as a development methodolo-
gy, XP goes a very long way toward having
a development team behave as quite a
mature software process. Contrary to the
perception among many organizations, as
a development process, XP can be
described as follows:
• Disciplined.
• Not an automatic solution to getting

projects done better, faster, cheaper.
• Dependent upon constant communi-

cation within the development team
and with the customer.

• Packaged to include many of the hard-
taught lessons learned from many
years of practical development experi-
ence.
As a result, the XP development

methodology Rules and Practices almost
explicitly mirror all but the Subcontract
Management, and Quality Assurance
CMM Level 2 Key Process Areas (KPAs).

Of these last two, if subcontracting
exists on XP projects it would have to be
addressed, but if not, then it can be tai-
lored out. The last remaining item is soft-

Open Forum

28 CROSSTALK The Journal of Defense Software Engineering November 2001

“If XP is viewed
as a development

methodology,
what is to keep a

software management
methodology such as the
CMM from being there

at the same time?”

November 2001 www.stsc.hill.af.mil 29

ware quality assurance (QA). I am sure
many readers familiar with XP think I am
insane – seeing that with all the testing
and iterations in XP, QA was not included
among those KPAs satisfied by XP. This is
due to another of the misunderstandings
in engineering (not just software) that I
will briefly address. QA is not quality con-
trol (QC).

On the Side
To put it simply, QC is testing. QC is def-
initely a major player in the XP methodol-
ogy. QC is a step in any of the develop-
ment methodologies. In XP, QC shows up
all over the place in the coding and testing
areas. In fact, QC is built into the plan-
ning and designing phases of XP before
coding begins. The resulting code (when
programming in the XP method) comes
from having coded the unit tests first after
understanding the component require-
ments. There is also a lot of QC (we hope)
in every development shop. But what QC
is not, is QA.

What is different between QA and
QC? In a nutshell, QA is process oriented
and QC is product oriented. Testing, there-
fore is product oriented and thus is in the
QC domain. Testing for quality is not
assuring quality, it is controlling it.

QA makes sure you are doing the right
things, the right way. QC makes sure the
results of what you’ve done are what you
expected. Some people would prefer we
redefine these as product QA and process
QA. An approach that I could endorse,
but that is not at issue here.

Nonetheless, while there is a lot of
obvious QC in XP – testing – QA is not
that far out of the XP Rules and Practices
either. There is a lot of wisdom built into
the XP Rules and Practices that when fol-
lowed, are the fixing’s for predictably high
quality output. In fact, some could argue
that preplanning the unit tests and then
coding the software is a unique approach
to QA. The key ingredients that would
add the right QA flavor to XP are man-
agement visibility, independent review and
audit, and assurance of the application of
standards and the development process.

In other words, most XP projects that
truly follow the XP Rules and Practices
could easily and quickly be assessed at
CMM Level 2 if they could demonstrate
having a process for the following:
• Ensuring that the XP Rules and

Practices are taught to new developers
on the project.

• Ensuring that the XP Rules and
Practices are followed by everyone.

• Escalating to decision makers when the

XP Rules and Practices are not fol-
lowed and not resolved within the
project.

• Measuring the effectiveness of the XP
Rules and Practices.

• Providing visibility to management via
appropriate metrics from prior project
QA experience.

• Knowing when the XP Rules and
Practices need to be adjusted.

• Having an independent person doing
the above.

The Resolution
If there is one thing developers have likely
understood by now, it is that there is no

silver bullet – either in development or
management methodologies. A road to
better, faster, and cheaper is not the road to
better, faster, and cheaper. This article in
no way suggests that XP is appropriate for
all projects, or for any organization, or is
without developmental disciplinary short-
comings. I am suggesting that there is a
workable solution to organizations pursu-
ing the use of dynamic, highly agile devel-
opment methodologies (such as XP) with-
in the context of process discipline (such
as CMM).

With the understanding that XP is a
software development methodology and
that CMM is a software management
methodology, and with people who can
tell the difference, these two methodolo-
gies cannot only co-exist, but they can
generate a mutually supportive environ-
ment, profitable company, and reliable
product.

In this example, by documenting a
project’s approach to XP, or even closely
following one of the many existing docu-
mented approaches, then by introducing
the QA KPA, projects are already very
close to CMM Level 2. With a little more
work at the organizational level, CMM
Level 3 is not far off. In an article on the

Institute of Electrical and Electronics
Engineers’ computer.org web site Paulk
[7] considers “… XP to be another exam-
ple of a good software process (or philoso-
phy), at least within the proper context,
that would satisfy many Software CMM
Level 2 and 3 goals.” He also adds, “if an
XP team decided to add quantitative man-
agement (perhaps even statistical tech-
niques) to provide more efficient real-time
feedback, it could probably achieve Level
4 process capability.”

Another Wells’ [1] diagram in Figure 2
provides an idea of the detailed develop-
ment release process. The macro-cycle
depicted here offers insight into opportu-
nities for several CMM KPAs such as proj-
ect planning, project tracking and over-
sight, organization process definition,
intergroup coordination, and others.

Ron Jeffries [8] wrote a quick article
outlining the activities performed on a
project that used XP and how they related
to the CMM’s upper four levels. While a
very cursory sample, it does convey that
there is some interest in seeing the two
methodologies work together.

While the list of projects experiment-
ing with or transitioning to XP is as
dynamic as the methodology itself, DoD
projects are likely to be few among them.
As mentioned, XP is intended for small
teams of programmers. If DoD projects
can be broken down into smaller projects
and integration of these components can
be tightly managed, then perhaps even
these projects can try XP.

At publication, this author personally
only knew of one organization giving seri-
ous thought to developing software using
XP within the CMM process framework.
However, although specifics of the effort
were proprietary, the prognosis of success-
fully pinning the myth to the mat is very
positive.

The Conclusion
There are many corporate and technical
leaders looking to find effective paths

Dispelling the Process Myth: Having a Process Doesn’t Mean Sacrificing Agility or Creativity

Figure 2: Release Iteration in XP

“ If an XP team decided
to add quantitative

management
(perhaps even statistical
techniques) to provide
more efficient real-time

feedback, it could
probably achieve Level
4 process capability.”

30 CROSSTALK The Journal of Defense Software Engineering November 2001

toward better, faster, and cheaper. There
has long been the perception that while
CMM managed organizations may
achieve the better, the jury is still out on
cheaper, and faster is clearly not readily evi-
dent. Especially when going from Level 1
to Level 2.

Projects thinking of using XP in
organizations already assessed against the
CMM are encouraged to shed the myth
that they could lose their CMM rating.
Organizations that use XP on their proj-
ects wanting to fulfill the intent of the
CMM’s KPAs are encouraged to shed the
myth that they will be bogged down with
the burden of dead trees. I posit that a
symbiotic relationship exists to be found
between the speed of agile development
methodologies such as XP, and the direc-
tion of process improvement management
methodologies such as CMM.

The first step is to understand why
your processes do or do not fulfill the
intent of CMM. Then plot the path of
how to make your processes what you
need them to be. The intent of the CMM
is what you need to demonstrate. If you
are effectively using a development
methodology like XP, you are already
nearly there. All you need to do is prove
it.

One path to better, faster, and cheap-
er can be found outside the development
myth in the peaceful coexistence of agile
programming and structured processes
and process improvement.u

References
1. Wells, J. Donovan. “Extreme Program-

ming: A Gentle Introduction.” <www.
ExtremeProgramming.org>.

2. Leishman, Theron. “Extreme Method-
ologies for an Extreme World.”
CrossTalk, June 2001: 15-18.

3. Duncan, Richard. “The Quality of
Requirements in Extreme Program-
ming.” CrossTalk, June 2001: 19-
22, 31.

4. Paulk, Mark C., Charles V. Weber, Bill
Curtis, and Mary Beth Chrissis, eds.
The Capability Maturity Model:
Guidelines for Improving the Software
Process. Software Engineering Insti-
tute. Addison-Wesley Longman, 1994.

5. Royce, W. W. “Managing the Develop-
ment of Large Software Systems.”
Proceedings of IEEE WESCON. Aug.
1970.

6. Boehm, Barry. “A Spiral Model of
Software Development and Enhance-
ment.” ACM SIGSOFT Software
Engineering Notes. Aug. 1986.

7. Paulk, Mark. “XP from a CMM
Perspective.” IEEE Computer Society.
Dynabook, 2001. <www.computer.
org/seweb/Dynabook/PaulkCom.htm>.

8. Jeffries, Ron. “Extreme Programming
and the Capability Maturity Model.” 1
Jan. 2000. <www.xprogramming.com
/xpm ag/xp_and_cmm.htm>.

Open Forum

About the Author
Hillel Glazer is the prin-
cipal consultant of
Entinex, Inc. He brings a
broad spectrum of expe-
rience in process engi-
neering and manage-
ment. He is a student of
the evolution of process-

centered design, development and pro-
duction and has followed the progress of
Total Quality Management, Integrated
Product and Process Development, ISO
9000, and the Capability Maturity
Model from their emergence and intro-
duction at the Department of Defense to
their subsequent migration to the private
sector. The focus of his career is on the
issues of product integrity and technolo-
gy management. He specializes in the
management-driven engineering princi-
ples of quality, operations, risk, require-
ments, productibility, configuration, and
project management. In merging these
disciplines with business and operations
strategies he emphasizes the importance
of thoroughly planned and integrated
process management. He has successfully
adapted and evolved these disciplines
across the Internet, software, and manu-
facturing industries.

Entinex, Inc.
1516 Castle Cliff Place
Silver Spring, MD 20904
Phone: (301) 384-4203
Fax: (240) 465-0062
E-mail: hillel@entinex.com

Object Management Group
www.omg.org
The Object Management Group (OMG) is an open member-
ship, not-for-profit consortium that produces and maintains
computer industry specifications for interoperable enterprise
applications. Its membership roster, about 800 strong, includes
virtually every large company in the computer industry, and
hundreds of smaller ones. OMG's best-known specifications
include CORBA, OMG IDL, IIOP, the OMA, and Domain
Facilities in industries such as healthcare, manufacturing,
telecommunications, and many others, UML, the MOF, and
CWM. All of OMG's specifications may be downloaded with-
out charge.

Distributed Objects & Components
www.cetus-links.org/oo_distributed_objects.html
This site of general information on distributed objects and com-
ponents is part of the Cetus Links network. Cetus Links offers
quick access and a comprehensive overview of tens of thousands
of interesting pages about object-orientation and component-
orientation that exist on the Internet. The Cetus Links can be
regarded as an index to Internet addresses (http, ftp, and mail-
to) about object-orientation and component-orientation.

Distributed Object Computing with CORBA
Middleware
www.cs.wustl.edu/~schmidt/corba.html
This site features mini-tutorials, including an overview of
CORBA, research, on-line specification, related papers, tools,
the ACE ORB (TAO), and CUJ and C++ report columns. It
also describes the contents of the series of C++ Network
Programming books written by Douglas C. Schmidt and Steve
Huston.

IEEE Computer Society
http://computer.org
With more than 100,000 members, the Institute of Electrical
and Electronics Engineers (IEEE) Computer Society claims to
be the world’s leading organization of computer professionals.
Founded in 1946, it is the largest of the 36 societies of the
IEEE. The society is dedicated to advancing the theory, prac-
tice, and application of computer and information processing
technology. The site features listings of conferences, journals,
technical committees, standards working groups, and more, to
promote an active exchange of information, ideas and techno-
logical innovation among its members.

WEB SITES

